Rapid and simple immunophenotypic characterization of lymphocytes using a new test

MAR BELLIDO, ENRIQUETA RUBIOL, JOSEP ÚBEDA, CAMINO ESTIVILL, OLGA LÓPEZ, ROSA MANTEIGA, JOSEP F. NOMDEDEÜ*

From the Departament d’Hematologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

ABSTRACT

Background and Objective. In this paper, we report our experience of lymphocyte phenotyping of a series of 108 consecutive samples using a simple flow cytometry test (Lymphogram®). The kit consists of a combination of 5 different markers conjugated with three fluorochromes (CD8-FITC, CD19-FITC, CD56-PE, CD3-PE, CD4-PECy5) in the same tube. This allows identification of different T-cells, NK subpopulations and B lymphocytes.

Design and Methods. The samples were divided into three groups: samples with absolute lymphocytosis (>5 × 10^9/L) (n=50), samples with relative lymphocytosis (>50%) (n=24) and other categories for which a lymphocyte immunophenotype was required (T-cell lymphoma and estimation of blood involvement in chronic lymphoproliferative disorders (CLPD) (n=34). When CD19+ cells exceeded the normal range or there was a suspicion of CLPD without B-cell lymphopenia, clonality was investigated by means of light chain restriction analysis.

Results. In the first group, 29 samples were abnormal (10 CLPD, 3 polyclonal B-cell lymphocytosis, 13 inversions of the CD4/CD8 ratio and 3 cases with CD4 lymphocytosis) and 21 samples were regarded as normal. In the second group 7 samples showed abnormalities (2 CLPD, 3 inverted CD4/CD8 ratios and 2 with a relative increase in CD4 cells). In one sample from the third group B-cell clonality without lymphocytosis was detected whereas in 18 samples a polyclonal pattern was observed. The presence of B-cell lymphopenia precluded further clonality study in 13 samples.

Interpretation and Conclusions. Lymphogram® associated with clonality analysis is a rapid, easy and cheap method of assessing lymphocyte phenotypes in the majority of clinically relevant situations.

©1998 Ferrata Storti Foundation

Key words: immunophenotype, flow cytometry, lymphocytosis, lymphoproliferative disorders, clonality

Materials and Methods

Samples

One hundred and eight consecutive whole blood samples from 108 subjects were included in the study. The samples were selected from our hematology laboratory and were divided into three groups: 1. samples with absolute lymphocytosis (>5 × 10^9/L) (n=50); 2. samples with relative lymphocytosis (>50% lymph-
phocytes) (n=24); 3. other categories: samples from patients with T-cell lymphomas (n=2) and from patients with clinical or morphological suspicion of CLPD (n=32).

All the cases were analyzed by means of Lymphogram® and in the case of an increase in B-lymphocytes or a possible CLPD, the κ/λ/CD19 combination was also assessed. The reference ranges chosen were those established by Reichert et al. because they were based on healthy Caucasian subjects and were determined by FC methods. In our series there were only 9 samples from patients under the age of 18 years. For these samples, the reference values published by Denny et al. for children were used.

Lymphogram® is a mixture of murine MoAbs against CD8, CD19, CD56, CD3 and CD4. CD8 and CD19 were conjugated with fluorescein-isothiocyanate (FITC), CD3 and CD56 with phycoerythrin (PE) and CD4 with phycoerythrin-cyanine 5 (Pe/Cy5). The recommendations of the manufacturer were followed when carrying out the analysis. For sample preparation a stain, lyse and then wash procedure was used; erythrocytes were lysed by means of FACS lysing solution [Becton Dickinson (BD)]. Clonality study of B lymphocytes was undertaken using a triple reagent consisting of a combination of κ-FITC, λ-PE and CD19 PE/Cy5 in a single tube (K/L, Simultest® purchased from Becton Dickinson, San José, CA, USA) and CD19-PE/Cy5 from Caltag, San Francisco, CA, USA.

Data acquisition and analysis
Measurements were performed on a FACScan flow cytometer (BD). For data acquisition the LYSIS-II (BD) software program was used. Fifteen thousand events/tube were measured. The PAINT-A-GATE PRO software program (BD) was used for further data analysis. The analysis was carried out on gated lymphoid cells. For this purpose, all the positive cells for the FL-1 (FITC) and FL-2 (PE) with low SSC were selected and the rest of the events were removed. A similar gating protocol based on light scatter and immunofluorescence (CD45/CD14) has been suggested for the optimal analysis of lymphocyte populations. The same principle, the combination of physical characteristics and fluorescence pattern, is exploited by Lymphogram®.

Calibration of the instrument was performed prior to data acquisition using well established protocols, and CD8+/CD4+/CD3+ positive controls as well as CALIBRITE beads standards (BD).

Results

Immunophenotypic findings in patients with absolute lymphocytosis (n=50)
Twenty-one samples were regarded as normal, since the differential percentage of lymphoid sub-populations fell within the standard range. Alterations were detected in 29 samples. Thirteen showed an increased number of CD19+ cells (normal range: 7-23%), 10 had restriction of the light chains and 3 additional cases (two men and one woman) showed a polyclonal pattern. In the monoclonal cases, complete immunophenotypic study of B-cell markers was performed. Four cases displayed a Matutes et al. score of 4-5; therefore these patients were diagnosed as having classic CLL. The other 6 cases corresponded to one mantle cell lymphoma, two follicular lymphomas (FL) and three atypical CLL. There was a concomitant diagnosis of chronic myelomonocytic leukemia with CLPD (FL) in one case (see Figure 2).

An increase in CD4+ cells (normal range: 28-58%) was detected in 3 cases. One of these cases corresponded to a chronic T-cell lymphoproliferative disorder in which a clonal TCR-β was found by molecular techniques (see Figure 2). This case was diagnosed as having Sézary cell leukemia. There was an inverted CD4+/CD8+ ratio (normal range: 0.6-2.8) in 13 cases. Four patients were diagnosed as having infectious mononucleosis, two patients suffered from large granular leukemia (LGL), five patients underwent an autologous bone marrow transplantation and one patient was treated for a non-Hodgkin lymphoma. There was no information about the diagnosis or evolution in one patient.

Immunophenotypic findings in patients with relative lymphocytosis (n=24)
Percentages of the different lymphoid populations were within the normal ranges (CD4:28-58%, CD8:19-48%, CD56:6-29%, CD19:7-23%) in 16 samples. The values were outside the normal ranges in 8 cases. An increase in CD19+ cells was observed in three of these, two of which were clonal. After complementary phenotypic analysis, one case was diagnosed as having classic B-CLL. The remaining clonal case corresponded to a FL. In two samples there was an increased percentage of CD4+ cells and in 3 an abnormal CD4+/CD8+ ratio was detected (two patients were diagnosed as having LGL and one patient suffered from amyloidosis and received an autologous bone marrow transplantation).

Patients suspected of suffering from a CLPD without lymphocytosis (n=34)
This group included samples obtained from patients with a suspected diagnosis of CLPD (n=32) and PB samples from patients with T-cell lymphomas (n=2).
A diagnosis of CLPD was suspected in 32 samples in the absence of lymphocytosis. B-cell clonality analysis was performed in 19 samples. Only one sample showed a monoclonal pattern (persistence of the neoplastic cells in one case of FL). In the remaining 18 cases, a polyclonal pattern indicating the absence of a predominant B-cell clone was identified. All the
samples not tested for light chain restriction showed B-cell lymphopenia.

An increase in the proportion of CD4+ cells was observed in one sample obtained from a patient with T-cell lymphoma. In the other case the result was ambiguous. Conventional Lymphogram® analysis showed an increased percentage of CD4+ cells occupying a position identical to that of NK-cells with regards to PE staining; however, NK lymphopenia was detected when this apparent NK lymphocytosis was studied with additional antibodies (CD2, CD3, CD56, CD16, CD94, cytoplasmic CD3). These contradictory data could be explained by the fact that neoplastic cells express CD3 at a low intensity only detectable with PE-CD3 conjugates.

Discussion
The aim of this study was to establish the value of Lymphogram® in daily immunophenotypic characterization of peripheral blood lymphocytes. The major advantage of this technique lies in its simultaneous, rapid and cheap identification of B-lymphocytes, NK-cells and T-cell populations. The technique requires software designed to analyze three or more fluorocences.9

Our results suggest that Lymphogram®, when combined with K/L/19 analysis, is useful for detecting clonal B-cell populations even in cases without lym-
phocytosis. Detection of monoclonal B-lymphocytes is one of the most important applications of FC in diagnostic hematology. This technique, however, can be time consuming and expensive when different combinations of antibodies are used. Recent developments in staining and software analysis have allowed more accurate and simple assessment of clonal B-cells. Furthermore, suitable antibody combinations such as the ones used in the present study obviate the need for cytophilic antibody-shedding by incubation at 37°C in fetal calf serum. FC techniques compare favorably with APAAP methods in terms of speed and interpretation. In this series, 13 samples were monoclonal and were included in the three groups. Furthermore, the polyclonal B-pattern might be of interest since persistent polyclonal lymphocytosis is a new entity that typically affects young women and follows a benign course. This disease could be confused with other malignant conditions. Interestingly, two of our cases were males. When we studied the clinical records of these two patients we found that one was a child with whooping cough diagnosed as having an acute pertussis syndrome and the other was an adult under treatment with an experimental drug. Lymphogram® could be used to screen samples to search for B-cell clonality.

Lymphogram® can also be used to identify patients with inverted CD4/CD8 ratios. This group is important since it includes patients with acute viral infections (infectious mononucleosis), frequent immunodeficiency status (HIV) and lymphoproliferative disorders of large granular lymphocytes. Analysis of sequential samples taken at periodic intervals, in conjunction with clinical and morphologic information, resolves most cases. If the alteration persists after three months without a clear diagnosis a clonality study of the T-cell receptor by means of Southern-blot should be carried out. The mature T-lymphoproliferative disorders are a heterogeneous group of diseases which result from the clonal expansion of T-cells at various stages of differentiation. Five main entities based on clinical, cytological and immunological features can be recognized: T-prolymphocytic...
leukemia (T-PLL) and its variant Sézary cell leukemia (SCL), adult-T cell leukemia lymphoma (ATLL), cutaneous T-cell lymphoma (CTCL), large granular lymphocyte leukemias of T-phenotype (LGL) and peripheral non-cutaneous T-cell non-Hodgkin’s lymphoma (T-NHL). The immunophenotype of all these disorders shows negativity for TdT associated with the expression of T-cell markers (CD3, CD5, CD4, CD7, CD8, CD2). It is possible to find cases which lack one or more of these antigens in these diseases. In our series, there was one case with a faint expression of CD3. The interpretation of Lymphogram® in this context could be difficult. However, the use of 3 T-associated markers (CD4, CD8, CD3) in Lymphogram® minimizes possible misinterpretations of the test. In addition, it allows us to identify empty spaces which could be occupied by neoplastic populations.

One potential use of this test is to diagnose NK-malignancies. There are two major types of NK proliferations, chronic and acute forms. In this series, cases which fulfilled the criteria of NK-lymphocytosis were not detected. However, NK subpopulations are readily identifiable in all the samples. This test could also be applied to the detection of rare T-cell subsets (double positives CD4+CD8+CD3+; and double negatives CD4–CD8–CD3–) in the setting of bone marrow transplantation. Lymphogram® associated with a simple clonality analysis provides a rapid and very informative immunophenotype at a low cost.

Contributions and Acknowledgements
JFN was responsible for the conception of the study, its design and for reviewing the manuscript. ER, JU, CE, OL and RM performed the test. MB was responsible for data handling and for drafting the article.

We are grateful to Professor Alberto Orfao for his comments and suggestions. We are also indebted to George von Knorring for improving the final version of the manuscript.

Disclosures
Conflict of interest: none.
Redundant publications: no substantial overlapping with previous papers.

Manuscript processing
Manuscript received January 30, 1998; accepted April 27, 1998.

References